Chapter 4 : Intermediate SQL

Database System Concepts, 7t Ed.

©Silberschatz, Korth and Sudarshan
See for conditions on re-use

Chapter 4: Intermediate SQL

= Join Expressions

= Views

= Transactions

= |ntegrity Constraints

= SQL Data Types and Schemas
= |ndex Definition in SQL

= Authorization

Database System Concepts - 7t Edition 4.2 ©Silberschatz, Korth and Sudarshan

Database System Concepts - 7t Edition

Problem?

Employvee
LastName DepartmentName
Rafferty Sales
Jones Engineering
Heisenberg Engineering
Robinson Clerical
Smith Clerical

Williams NULL

Redundant Data!!!

4.3

©Silberschatz, Korth and Sudarshan

Database System Concepts - 7t Edition

Solution

Employee

LastName DepartmentName

Rafferty

Jones

Heisenberg
Robinson

Smith

Williams

Employee Table

LastName

Rafferty
Jones
Heisenberg
Robinson
Smith
Williams

4.4

Sales
Engineering
Engineering

Clerical
Clerical

Department Table

DepartmentName

Sales
Engineering
Engineering

Clerical
Clerical

©Silberschatz, Korth and Sudarshan

Database System Concepts - 7t Edition

Solution

Employee
LastName DepartmentName
Rafferty Sales
Jones Engineering
Heisenberg Engineering
Robinson Clerical
Smith Clerical
Williams I
Employee Table Department Table
LastName DepartmentName
Rafferty Sales
Jones Engineering
Heisenberg Clerical
Robinson Marketing
Smith
Williams Delete Redundant Data!
4.5 ©Silberschatz, Korth and Sudarshan

Solution
Add primary key (ID)

Employee
LastName DepartmentName
Rafferty Sales
Jones Engineering
Heisenberg Engineering
Robinson Clerical
Smith Clerical
Williams NULL|
Employee Table Department Table
LastName Department
Rafferty DepartmentID DepartmentName
ot 31 Sales
HEISE‘:HbEI'E 33 Engineering
Robu.lson 34 Clerical
Smith 15 Marketing
Williams

Database System Concepts - 7t Edition 4.6 ©Silberschatz, Korth and Sudarshan

How to make a relationship
between two tables?

Foreign Key

Database System Concepts - 7t Edition

Solution

Employee

LastName DepartmentName

Rafferty
Jones
Heisenberg
Robinson
Smith
Williams

Employee Table

LastName

Rafferty
Jones
Heisenberg
Robinson
Smith
Williams

4.7

Sales
Engineering
Engineering

Clerical
Clerical

Department Table

Department
DepartmentID DepartmentName

31
33
34
35

Sales
Engineering
Clerical
Marketing

©Silberschatz, Korth and Sudarshan

Solution

Employee
LastName DepartmentName
Rafferty Sales
Jones Engineering
Heisenberg Engineering
Robinson Clerical
Smith Clerical
Williams NULL|
Employee Table
Department Table
Employee Department

DepartmentID DepartmentName

LastName DepartmentID

e 31 S.ales .
33 Engineering
Jones i
. 34 Clerical
Heisenberg 35 Marketin
Robinson :
Smith
Williams

Database System Concepts - 7t Edition 4.8 ©Silberschatz, Korth and Sudarshan

Solution

Employee
LastName DepartmentName
Rafferty Sales
Jones Engineering
Heisenberg Engineering
Robinson Clerical
Smith Clerical
Williams NULL|
Employee Table
Department Table
Employee Department
LastName DepartmentID DepartmentID DepartmentName
Rafferty 31 EE— 31 Sales
Jones 33 7 33 Engineering
Heisenberg 33 34 Clerical
Robinson 34 35 Marketing
Smith 34

Williams m

Database System Concepts - 7t Edition 4.9 ©Silberschatz, Korth and Sudarshan

Structured Query Language (SQL)

SELECT <attribute list>
FROM <fable list >
WHERE <condition>

= [anguage for constructing a new table from argument table(s).
FROM indicates source tables
WHERE indicates which rows to retain
= It acts as a filter
indicates which columns to extract from retained rows
= Projection
= The result is a table.

10

Database System Concepts - 7t Edition 410 ©Silberschatz, Korth and Sudarshan

Example

SELECT Name
FROM Student
WHERE Id > 4999;

Id Name Address Status Name
1234 John 123 Main {fresh Mary
5522 Mary 77 Pine senior Bill

9876 Bill 83 Oak junior

Result
Student

11

Database System Concepts - 7t Edition 4.1 ©Silberschatz, Korth and Sudarshan

Examples
SELECT Id, Name FROM Student:;

SELECT Id, Name FROM Student
WHERE Status = 'senior";

SELECT * FROM Student A

result is a table

WHERE Status = 'senior; J with one column

and one row

SELECT COUNT(*) FROM Student
WHERE Status = 'senior";

12

Database System Concepts - 7t Edition 412 ©Silberschatz, Korth and Sudarshan

More Complex Example

= Goal: table in which each row names a senior and gives a course
taken and grade

= Combines information in two tables:
Student: Id, Name, Address, Status
Transcript: Studld, CrsCode, Semester, Grade

SELECT Name, CrsCode, Grade
FROM Student, Transcript
WHERE Studld = Id AND Status = 'senior’;

13

Database System Concepts - 7t Edition 413 ©Silberschatz, Korth and Sudarshan

Join

T1 T2
SELECT al, bl al a2 a3| |bl b2
FROM TI, T2 A 1 XXY 3.2 17
WHERE 42 = b2 B 17 rst 4.8 17
al a2 a3 bl b2
A 1 xxy 3.2 17
FROM T1, T2 A 1 xxy 4.8 17
ylelds: B 17 rst 32 17
B 17 rst 4.8 17
WHERE «2=52 |B 17 rst 3.2 17
yields: B 17 rst 4.8 17

SELECT al,b1 |B 32
yields result: B 4.8

14

Database System Concepts - 7t Edition 414 ©Silberschatz, Korth and Sudarshan

Modifying Tables

UPDATE Student
SET Status ='"soph'
WHERE Id=111111111;

INSERT INTO Student (Id, Name, Address, Status)
VALUES (999999999, 'Bill', '432 Pine', 'senior’)

DELETE FROM Student
WHERE /Id= 111111111

15

Database System Concepts - 7t Edition 4.15 ©Silberschatz, Korth and Sudarshan

Practice

Find the titles of courses in the Comp. Sci. department that have 3 credits.

select title

from course

where dept name = 'Comp. Sci.’
and credits = 3

Find the highest salary of any instructor.

select max(salary)
from instructor

Find all instructors earning the highest salary (there may be more than one
with the same salary).

select /D, name

from instructor
where salary = (select max(salary) from instructor)

Database System Concepts - 7t Edition 4.16 ©Silberschatz, Korth and Sudarshan

Practice

write a query that finds departments whose names contain the string
“Sci” as a substring.

select dept name

from department

where dept _name like *%Sci%’

Find all instructors who do not work for Computer Science department.
(Assume that all people work for exactly one department).

select name

from instructor

where dept _name <>'Comp. Sci.’

Database System Concepts - 7t Edition 417 ©Silberschatz, Korth and Sudarshan

Practice

Modify the database so that Kim now teaches in Biology.
(Assume that each person has only one tuple in the instructor relation)

update instructor
set dept_name = ‘Biology’
where name = ‘Kim’

Increase the salary of each instructor in the Comp. Sci. department by 10%.
update instructor
set salary = salary * 1.10
where dept name =’'Comp. Sci.’

Database System Concepts - 7t Edition 418 ©Silberschatz, Korth and Sudarshan

Joined Relations

= Join operations take two relations and return as a
result another relation.

= Ajoin operation is a Cartesian product which requires
that tuples in the two relations match (under some
condition). It also specifies the attributes that are
present in the result of the join

= The join operations are typically used as subquery
expressions in the from clause

= Three types of joins:
Natural join
Inner join
Outer join

Database System Concepts - 7t Edition 419 ©Silberschatz, Korth and Sudarshan

Join

INNER JOIN EXAMPLE FULL JOIN EXAMPLE CROSS JOIN EXAMPLE

1 1
TABLE TABLE 2 2
EMPLOYEE DEPARTMENT

©tutorialgateway.org

TABLE
DEPARTMENT

TABLE
EMPLOYEE

TABLE EMPLOYEE TABLE DEPARTMENT

LEFT JOIN EXAMPLE RIGHT JOIN EXAMPLE SELF JOIN EXAMPLE

CONNECTING TO ITESELF

TABLE TABLE ki TABLE

EMPLOYEE DEPARTMENT

DEPARTMENT EMPLOYEE TABLE EMPLOYEE

20
Database System Concepts - 7t Edition 4.20 ©Silberschatz, Korth and Sudarshan

Semantics of JOINs

SELECT Xq.a4, Xq.85, ...y X,.84
FROM R;{AS x4, R, AS Xy, ..., R, AS X,
WHERE Conditions(Xq,..., X;,)

Answer = {}
for x, inR, do
for x, inR, do

for x, inR_ do
if Conditions(xy, ..., x,)
then Answer = Answer@{(xl.al, X1-p, ey X2)}
return Answer

Database System Concepts - 7t Edition 4.21 ©Silberschatz, Korth and Sudarshan

R
B
S 2
3
3

An example of SQL semantics

Database System Concepts - 7t Edition

SELECTR.A Output
FROM R, S
WHERE R.A=S.B
/ A | B \
1 2
Cross .-
1 3 pply o
Pw Selections/ Apply Projection
1 |3 Conditions | o | & | ¢
. 2 3 3 4
: 3 3 3 5
\\ 3 |3 /

4.22

©Silberschatz, Korth and Sudarshan

Practice

MySQL supports the following types of joins:

Cross join
Inner join
Left join

Right join

MySQI Tutorial:
http://www.mysqltutorial.org/

Database System Concepts - 7t Edition 4.23

https://en.wikipedia.org/wiki/Join_(SQL)

23
©Silberschatz, Korth and Sudarshan

Database System Concepts - 7t Edition

T1

Example

coll

col?

1
2

11
22

4.24

T2

coll

col3

10
2

101
202

©Silberschatz, Korth and Sudarshan

SELECT * FROM table1 CROSS JOIN table2;

Cross Join
Cartesian Product

SELECT *
FROM table_a

In CROSS JOIN, each row from 1st table joins with all the rows of another table. CROSS JOIN table _b;
If 1st table contain x rows and y rows in 2nd one the result set will be x * y rows.

100 descll | descl2 101 descdl descd2
,‘l— 103 descsl | descs2

105 descel descs2

table a table b
101 descdl descd2 100 |descll|descl2| 101 descdl descd2
100 |descii|desciz| ¢ 103 descS1 descs2 ——| 100 |descll|desc12| 103 descS1 descs2
105 descol descs2 100 |descll|descl2| 105 deschl desc52

descdl desc42
descsl descs2
descel desch2

101 descdl descd2
103 descs1 descs2 =
105 deschl descs2

descdl descd42
descsl desch2
descel descs2

101 desc4l desca2
103 desc51 descs2| ==
105 descel descs2

id desl des2 id des3 desd

100 descll descl? 101 desc4l desc4?
100 descll descl2 103 desc5l desc52
100 descll descl? 105 descel desce?2

101 desc2l desc22 10 descdl descd?2

101 desc2l desc22 103 descsl descs2

101 desc2l desc22 105 descal desch2 "
102 desc3l desc3z 101 desc4l desc4?2

102 desc3l desc32 103 deschl descs2

102 desc3l desc32 105 descel desce2

Database System Concepts - 7t Edition 4.25 ©Silberschatz, Korth and Sudarshan

Cross Join

Employee.LastName | Employee.DepartmentlD | Department.DepartmentName Department.DepartmentiD

Rafferty 31 Sales 31

Employee Jones 33 Sales 31

LastName DepartmentID Heisenberg 33 Sales 3

Rafferty 31 Smith 34 Sales 31

Jones | 33 Robinson 34 Sales 31
Heisenberg 33 =

Robinson 34 Williams Sales 31

Smith 34 Rafferty 31 Engineering 33

L Jones 33 Engineering 33

Department Heisenberg 33 Engineering 33

- DepartmentID - DepartmentName - Smith 34 Engineering 33

31 Sales Robinson 34 Engineering 33

33 . Engineering Williams Engineering 33

34 _ Clerical Rafferty 31 Clerical 34

35 Marketlng Jones 33 Clerical 34

Heisenberg 33 Clerical 34

Smith 34 Clerical 34

Robinson 34 Clerical 34

Williams NULL Clerical 34

Rafferty 31 Marketing 35

Jones 33 Marketing 35

Heisenberg 33 Marketing 35

Smith 34 Marketing 35

Robinson 34 Marketing 35

Williams Marketing 35

Database System Concepts - 7t Edition

4.26

©Silberschatz, Korth and Sudarshan

SQL Inner Join

Inner Join

Exists in both
left and right tables
_ table1 and table2

2, bbbb
2, eeee

Haen)

s)

Ly w3resource.com
)7

Database System Concepts - 7" Edition 4.27 ©Silberschatz, Korth and Sudarshan

Join Condition

= The on condition allows a general predicate over the relations
being joined.

= This predicate is written like a where clause predicate except for
the use of the keyword on.

= Query example

select *
from student join takes on student ID = takes ID

The on condition above specifies that a tuple from student
matches a tuple from takes if their ID values are equal.

= Equivalent to:

select *
from student, takes
where student ID = takes ID

Database System Concepts - 7t Edition 4.28 ©Silberschatz, Korth and Sudarshan

Inner join

Employee
LastName DepartmentID
Rafferty 31
Aiies e Employee.LastName Employee.DepartmentiD Department.DepartmentName
Heisenberg 33
Robinson 34 Robinson 34 Clerical
Smith 34
Williams NULL Jones 33 Engineering
Smith 34 Clerical
Department Heisenberg 33 Engineering
DepartmentID DepartmentName Rafferty 31 Gals
31 Sales
33 Engineering
34 Clerical
35 Marketing

Database System Concepts - 7t Edition 4.29 ©Silberschatz, Korth and Sudarshan

Outer Join

= An extension of the join operation that avoids loss of
information.

= Computes the join and then adds tuples form one relation
that does not match tuples in the other relation to the result
of the join.

= Uses null values.

= Three forms of outer join:
left outer join
right outer join
full outer join

Database System Concepts - 7t Edition 4.30 ©Silberschatz, Korth and Sudarshan

Left (outer) Join

Exists in both
left and right tables
 table1 and table2

SY - =
b (%% 2
Z | | ~

(2ge)

Mot exists in RIGHT
table table2

L) wiresource. com

Database System Concepts - 7t Edition 4.31 ©Silberschatz, Korth and Sudarshan

31

Left Outer Join

AVenn Diagram representing the L=
Left Join SOL statement between
tables A and B.

Employee
Department

LastName DepartmentID
DepartmentID DepartmentName

Rafferty 31
S = 31 Sales
Helse.nberg <k 33 Engineering
Robinson 34 .
Smith 34 34 Clerical
Williams NULL 35 Marketing

Employee.LastName Employee.DepartmentlD Department.DepartmentName Department.DepartmentiD

Jones
Rafferty
Robinson
Smith
Williams

Heisenberg

Database System Concepts - 7t Edition

33 Engineering

31 _ Sales

34 Clerical

34 Clerical

33 Engineering
4.32

33
31
34
34

33

©Silberschatz, Korth and Sudarshan

Right(Outer) Join

‘Exists in both
left and right tables
 table1 and table2

2, bbbb
2, eeee

(2

4, dddd ()
4.9999

ccco
frff

Mot exists in LEFT
table table1

Lyw3resource.com

33
Database System Concepts - 7t Edition 4.33 ©Silberschatz, Korth and Sudarshan

Right Outer Join

AVenn Diagram representing the =
Right Join SCL statement between
tables A and B.

Employee
Department

LastName DepartmentID
DepartmentID DepartmentName

Rafferty 31
Jans4 33 31l Sales
Helse.nberg 23 33 Engineering
Robinson 34 .
Smith 34 34 Clerical
Williams NULL] 35 Marketing

Employee.LastName Employee.DepartmentlD | Department.DepartmentName Department.DepartmentiD

smith 34 Clerical 34
Jones 33 Engineering 33
Robinson 34 | Clerical 34
Heisenberg | 3 Engineering | 233
Rafferty 31 | Sales 21

| NULL | | NULL | | Marketing 35

Database System Concepts - 7t Edition 4.34 ©Silberschatz, Korth and Sudarshan

Full Outer Join

ANenn Diagram representing the
Full Join S0QL statement between
tables Aand B.

Employee
LastN DepartmentID Department
astvame I T |
| — . DepartmentID DepartmentName
Rafferty 31 _
Jones 33 31 Sales
Heisenberg = 33 Engineering
Robinson 34 34 Clerical
Smith 34 S
Williams 33 Marketing
Employee.LastName | Employee.DepartmentiD | Department.DepartmentName Department.DepartmentiD
Smith 34 Clerical 34
Jones 33 Engineering 33
Robinson 34 Clerical 34
Williams NULL NULL NULL
Heisenberg 33 Engineering 33
Rafferty 31 Sales 1
HULL NULL Marketing 35

Database System Concepts - 7t Edition

4.35

©Silberschatz, Korth and Sudarshan

Other Join

Equi-join:
An equi-join is a specific type of comparator-based join, that uses only
equality (=) comparisons in the join-predicate. Using other comparison

operators (such as <) disqualifies a join as an equi-join. The query shown
above has already provided an example of an equi-join:

SELECT *
FROM employee JOIN department
ON employee.DepartmentID = department.DepartmentID;

We can write equi-join as below:
SELECT *
FROM employee, department
WHERE employee.DepartmentID = department.DepartmentiD;

Database System Concepts - 7t Edition 4.36 ©Silberschatz, Korth and Sudarshan

Other Join

Natural join:

The natural join is a special case of equi-join. Natural join () is a binary
operator that is written as (R < S) where R and S are relations.

The result of the natural join is the set of all combinations of tuples in R
and S that are equal on their common attribute names. For an
example consider the tables Employee and Dept and their natural join:

Employee Dept Employee t<1 Dept
Mame Empld DeptName DeptName | Manager Name Empld | DeptName Manager
Harry |3415 | Finance Finance George Harry |3415 | Finance George
Sally 2241 Sales Sales Harriet Sally 2241 Sales Harriet
George | 3401 Finance Production | Charles George | 3401 Finance George
Harriet | 2202 Sales Harriet | 2202 Sales Harriet
SELECT =

FROM employee NATURAL JOIN department;

Database System Concepts - 7t Edition 4.37 ©Silberschatz, Korth and Sudarshan

Subquery

= A sub query is a select query that is contained inside another query.
The inner select query is usually used to determine the results of the
outer select query.

SELECT * FROM Table_1

WHERE (column_1,column_2) =

Subqueries are embedded queries inside another query. The embedded query is known
as the inner query and the container query is known as the outer query.

Database System Concepts - 7t Edition 4.38 ©Silberschatz, Korth and Sudarshan

Example

movies = (movie_id, title, director, year_released, category id)

SELECT category _name

FROM categories
WHERE category id = (SELECT MIN(category id)

FROM movies);
Fivst Hhe INNER. Query is executed

SELECT MIN(category_1d) from movies

INNER. Query gives Following vesal

MIN(category_id)

<0.41>.+ of INNER. Qunery is sabstibcked in OUTER. Query

SELECT category_name FROM categories WHERE category_id =1

<0r\ Execation OUTERQuug gives Following ResaH

category_name
p | Comedy

The above is a form of Row Sub-Query. In such sub-queries the, inner query can give only
ONE result. The permissible operators when work with row subqueries are [=, >, =, <=, ,!=,]

Database System Concepts - 7th Edition 4.39 ©Silberschatz, Korth and Sudarshan

Example

SELECT full_names,contact_number

FROM members

WHERE membership_number IN (SELECT membership_number
FROM movierentals
WHERE return_date IS NULL);

Fivst Hhe INNER Query is executed

<SELE(T membership_number FROM movierentals WHERE return_date IS NULL

INNER. &AWH gives Fo“ohlit\g vesaH

membership_number
» |1

<0-r|1>n+ of INNER. Q.nwg is substibuted in OUTERQ-\wg

<SELECT full_names,contact_number FROM members WHERE membership number IN (1,3)

On Excecution m@.ﬂdﬂ gives Fo“oﬂing Resatt

full_names contact_number
p |Janet Jones 0759 253 542
Robert Phil 12345

In this case, the inner query returns more than one results. The above is type of
Table sub-query.

Database System Concepts - 7th Edition 4.40 ©Silberschatz, Korth and Sudarshan

Subqueries

* A subquery may occur in:
— A SELECT clause
— A FROM clause
— AWHERE clause

* Rule of thumb: avoid writing nested queries when
possible; keep in mind that sometimes it's impossible

Database System Concepts - 7t Edition 4.41 ©Silberschatz, Korth and Sudarshan

Correlated Nested Queries

Output a row <prof, dept> 1f prof has taught a course
in dept.

SELECT P.Name, D.Name --outer query
FROM Professor P, Department D
WHERE P.Id IN == set of all Profld’s who have taught a course in D.Deptld

--subquery
Course C
C
C.Deptld = D.Deptld --correlation

Database System Concepts - 7t Edition 4.42 ©Silberschatz, Korth and Sudarshan

Correlated Nested Queries (con’t)

= Tuple variables T and C are local to subquery

= Tuple variables P and D are global to subquery
= Correlation: subquery uses a global variable, D
= Correlated queries can be expensive to evaluate

Database System Concepts - 7t Edition 4.43 ©Silberschatz, Korth and Sudarshan

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

For each product return the city where it is manufactured

Database System Concepts - 7t Edition 4.44 ©Silberschatz, Korth and Sudarshan

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

Database System Concepts - 7th Edition 4.45 ©Silberschatz, Korth and Sudarshan

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

What happens if the subquery returns more than one city?

We get a runtime error
(Some DBMS simply ignore the extra values)

Database System Concepts - 7th Edition 4.46 ©Silberschatz, Korth and Sudarshan

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

For each product return the city where it is manufactured

“correlated

SELECT X.pname, (SELECT Y.city
subquery”

FROM Company Y _
WHERE Y.cid=X.cid) as City

FROM Product X

What happens if the subquery returns more than one city?

We get a runtime error
(Some DBMS simply ignore the extra values)

Database System Concepts - 7th Edition 4.47 ©Silberschatz, Korth and Sudarshan

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

For each product return the city where it is manufactured

“correlated
_ subquery”

as City

SELECT X.pname, (SELECT Y.city

WHERE Y.cid=X.cid)

FROM Product X

What happens if the subquery returns more than one city?

We get a runtime error
(Some DBMS simply ignore the extra values)

Database System Concepts - 7th Edition 4.48 ©Silberschatz, Korth and Sudarshan

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

Whenever possible, don’t use a nested queries:

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

SELECT X.pname, Y.city
FROM Product X, Company Y
WHERE X.cid=Y.cid

Database System Concepts - 7th Edition 4.49 ©Silberschatz, Korth and Sudarshan

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

Whenever possible, don’t use a nested queries:

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

SELECT X.pname, Y.city
FROM Product X, Company Y
WHERE X.cid=Y.cid

We have
“‘unnested”
the query

Database System Concepts - 7th Edition 4.50 ©Silberschatz, Korth and Sudarshan

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)

FROM Product P
WHERE P.cid=C.cid)
FROM Company C

Database System Concepts - 7th Edition 4.51 ©Silberschatz, Korth and Sudarshan

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)

FROM Product P
WHERE P.cid=C.cid)
FROM Company C

_ SELECT C.cname, count(*)
Better: we Ca_n FROM Company C, Product P
unnest by using | WHERE C.cid=P.cid

a GROUP BY GROUP BY C.cname

Database System Concepts - 7th Edition 4.52 ©Silberschatz, Korth and Sudarshan

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

But are these really equivalent?

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

SELECT C.cname, count(*)
FROM Company C, Product P

WHERE C.cid=P.cid
GROUP BY C.cname

Database System Concepts - 7th Edition 4.53 ©Silberschatz, Korth and Sudarshan

1. Subqueries in SELECT

Product (pname, price, cid)
Company(cid, cname, city)

But are these really equivalent?

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

SELECT C.cname, count(*) _ _
FROM Company C, Product P No! Different results if a

WHERE C.cid=P.cid
GROUP BY C.cname company has no products

SELECT C.cname, count(pname)
FROM Company C LEFT OUTER JOIN Product P

ON C.cid=P.cid
GROUP BY C.cname

Database System Concepts - 7th Edition 4.54 ©Silberschatz, Korth and Sudarshan

2. Subqueries in FROM

Product (pname, price, cid)
Company(cid, cname, city)

Find all products whose prices is > 20 and < 500

SELECT X.pname

FROM (SELECT * FROM Product AS Y WHERE price > 20) as X
WHERE X.price < 500

Unnest this query !
SELECT pname FROM Product
WHERE price > 20 and price < 500

Database System Concepts - 7th Edition 4.55 ©Silberschatz, Korth and Sudarshan

3. Subqueries in WHERE

Product (pname, price, cid)
Company(cid, cname, city)

Find all companies that make some products with price < 200

Database System Concepts - 7t Edition 4.56 ©Silberschatz, Korth and Sudarshan

3. Subqueries in WHERE

Find all companies that make some products with price < 200

Product (pname, price, cid)
Company(cid, cname, city)

{Existential quantifiersJ

Database System Concepts - 7th Edition 4.57 ©Silberschatz, Korth and Sudarshan

3. Subqueries in WHERE

Product (pname, price, cid)
Company(cid, cname, city)

= Find all companies that make some products with price < 200

{ = Existential quantifiers J

= Using IN

SELECT DISTINCT C.cnhame

FROM Company C

WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 200)

Database System Concepts - 7th Edition 4.58 ©Silberschatz, Korth and Sudarshan

SQL EXISTS Operator

= The EXISTS operator is used to test for the existence of any
record in a subquery.

= The EXISTS operator returns true if the subquery returns one or
more records.

= Exists Syntax:

SELECT column_name(s)
FROM table _name
WHERE EXISTS (SELECT column_name

FROM table _name
WHERE condition);

Database System Concepts - 7t Edition 4.59 ©Silberschatz, Korth and Sudarshan

Example 1

ProductlD | ProductName | SupplierlD | Price SupplierlD | SupplierName | ContactName City
1 Chais 1 18 1 Exotic Liquid Charlotte Cooper LA
z Chang 1 21 2 Cajun Delights | Shelley Burke NY
3 Syrup 1 10
4 Seasoning 5 22 3 Homestead Regina Murphy SF
5 Gumbo 2 19

SELECT DISTINCT SupplierName

FROM Suppliers AS S

WHERE EXISTS (SELECT ProductName
FROM Products AS P
WHERE P.SupplierlD = S.SupplierlD
AND Price < 20);

This SQL statement returns TRUE and lists the suppliers with a product price less than 20

Database System Concepts - 7t Edition 4.60 ©Silberschatz, Korth and Sudarshan

Example 2

ProductlD | ProductName | SupplierlD | Price SupplierlD | SupplierName | ContactName City
1 Chais 1 18 1 Exotic Liquid Charlotte Cooper LA
z Chang 1 21 2 Cajun Delights | Shelley Burke NY
3 Syrup 1 10
4 Seasoning 5 22 3 Homestead Regina Murphy SF
5 Gumbo 2 19

SELECT DISTINCT SupplierName

FROM Suppliers AS S

WHERE EXISTS (SELECT ProductName
FROM Products AS P
WHERE P.SupplierlD = S.SupplierlD
AND Price = 22);

This SQL statement returns TRUE and lists the suppliers with a product price equal to 22

Database System Concepts - 7t Edition 4.61 ©Silberschatz, Korth and Sudarshan

3. Subqueries in WHERE

Product (pname, price, cid)
Company(cid, cname, city)
= Find all companies that make some products with price < 200

{- Existential quantifiers J

= Using EXISTS:

SELECT DISTINCT C.cname

FROM Company C

WHERE EXISTS (SELECT *
FROM Product P

WHERE C.cid = P.cid and P.price < 200)

Database System Concepts - 7th Edition 4.62 ©Silberschatz, Korth and Sudarshan

3. Subqueries in WHERE

Product (pname, price, cid)
Company(cid, cname, city)

= Find all companies that make some products with price < 200

{- Existential quantifiers J

= Using ANY:

SELECT DISTINCT C.cnhame

FROM Company C

WHERE 200 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Database System Concepts - 7th Edition 4.63 ©Silberschatz, Korth and Sudarshan

3. Subqueries in WHERE

Product (pname, price, cid)
Company(cid, cname, city)

*= Find all companies that make some products with price < 200

{- Existential quantifiers J

= Using ANY:

SELECT DISTINCT C.cname

FROM Company C Not supported
WHERE 200 > ANY (SELECT price in MySQL

FROM Product P
WHERE P.cid = C.cid)

Database System Concepts - 7th Edition 4.64 ©Silberschatz, Korth and Sudarshan

3. Subqueries in WHERE

Product (pname, price, cid)
Company(cid, cname, city)

= Find all companies that make some products with price < 200

{- Existential quantifiers J

{- Now let’s unnest it: J

SELECT DISTINCT C.cname

FROM Company C, Product P
WHERE C.cid= P.cid and P.price < 200

Database System Concepts - 7th Edition 4.65 ©Silberschatz, Korth and Sudarshan

3. Subqueries in WHERE

Product (pname, price, cid)
Company(cid, cname, city)

= Find all companies that make some products with price < 200

{- Existential quantifiers J

{- Now let’'s unnest it; J

SELECT DISTINCT C.cname

FROM Company C, Product P
WHERE C.cid= P.cid and P.price < 200

Existential quantifiers are easy! ©

Database System Concepts - 7th Edition 4.66 ©Silberschatz, Korth and Sudarshan

3. Subqueries in WHERE

Find all companies s.t. all their products have price < 200

Same as.

Find all companies that make only products with price < 200

Product (pname, price, cid)
Company(cid, cname, city)

Database System Concepts - 7t Edition 4.67 ©Silberschatz, Korth and Sudarshan

3. Subqueries in WHERE

Find all companies s.t. all their products have price < 200

Same as.

Find all companies that make only products with price < 200

Product (pname, price, cid)
Company(cid, cname, city)

{Universal quantifiers}

Database System Concepts - 7th Edition 4.68 ©Silberschatz, Korth and Sudarshan

3. Subqueries in WHERE

Find all companies s.t. all their products have price < 200

Same as.

Find all companies that make only products with price < 200

Product (pname, price, cid)
Company(cid, cname, city)

{Universal quantifiers}

Universal quantifiers are hard! ®

Database System Concepts - 7th Edition 4.69 ©Silberschatz, Korth and Sudarshan

3. Subqueries in WHERE

Find all companies s.t. all their products have price < 200

1. Find the other companies: i.e. s.t. some product > 200

SELECT DISTINCT C.cname Product (pname, price, cid)
FROM Company C Company(cid, cname, city)

WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Database System Concepts - 7th Edition 4.70 ©Silberschatz, Korth and Sudarshan

3. Subqueries in WHERE

Find all companies s.t. all their products have price < 200

1. Find the other companies: i.e. s.t. some product > 200

SELECT DISTINCT C.cname . Product (pname, price, cid)
FROM Company C Company(cid, cname, city)

WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

2. Find all companies s.t. all their products have price < 200

SELECT DISTINCT C.cnhame

FROM Company C

WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 200)

Database System Concepts - 7th Edition 4.71 ©Silberschatz, Korth and Sudarshan

3. Subqueries in WHERE

Find all companies s.t. all their products have price < 200

Product (pname, price, cid)
Company(cid, cname, city)

{ Universal quantifiers}

Using EXISTS:

SELECT DISTINCT C.cnhame
FROM Company C
WHERE NOT EXISTS (SELECT *
FROM Product P
WHERE P.cid = C.cid and P.price >= 200)

Database System Concepts - 7th Edition 4.72 ©Silberschatz, Korth and Sudarshan

3. Subqueries in WHERE

Find all companies s.t. all their products have price < 200

Product (pname, price, cid)
Company(cid, cname, city)

{ Universal quantifiers}

Using ALL:

SELECT DISTINCT C.cname
FROM Company C

WHERE 200 >=ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Database System Concepts - 7th Edition 4.73 ©Silberschatz, Korth and Sudarshan

3. Subqueries in WHERE

Find all companies s.t. all their products have price < 200

Product (pname, price, cid)
Company(cid, cname, city)

{Universal quantifiers}

Using ALL:
SELECT DISTINCT C.cname

FROM Company C Not supported
WHERE 200 >ALL (SELECT price in MySQL

FROM Product P
WHERE P.cid = C.cid)

Database System Concepts - 7th Edition 4.74 ©Silberschatz, Korth and Sudarshan

Constraints on a Single Relation

= not null

= Default value

" unique

= check (P), where P is a predicate

Database System Concepts - 7t Edition 4.75 ©Silberschatz, Korth and Sudarshan

Not Null Constraints

= not null
Declare name and budget to be not null

name varchar(20) not null
budget numeric(12,2) not null

Database System Concepts - 7t Edition 4.76 ©Silberschatz, Korth and Sudarshan

Default Value

-Value to be assigned if attribute value in a row is not specified

CREATE TABLE Student (
Id INTEGER,
Name CHAR(20) NOT NULL,
Address CHAR(50),
Status CHAR(10) DEFAULT freshman’,
PRIMARY KEY (Id))

77

Database System Concepts - 7t Edition 4.77 ©Silberschatz, Korth and Sudarshan

Unique Constraints

" unique (A4, Ay, ..., Ay)

The unique specification states that the attributes
Aq, Ay, ..., A, form a candidate key.

Candidate keys are permitted to be null (in contrast
to primary keys).

Database System Concepts - 7t Edition 4.78 ©Silberschatz, Korth and Sudarshan

The check clause

= The check (P) clause specifies a predicate P that must be
satisfied by every tuple in a relation.

= Example: ensure that semester is one of fall, winter, spring or
summer

create table section
(course_id varchar (8),
sec _id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room _number varchar (7),
time slot id varchar (4),
primary key (course id, sec id, semester, year),
check (semester in ('Fall', 'Winter', 'Spring’, 'Summer')))

Database System Concepts - 7t Edition 4.79 ©Silberschatz, Korth and Sudarshan

Referential Integrity

= Ensures that a value that appears in one relation for a given set
of attributes also appears for a certain set of attributes in
another relation.

Example: If “Biology” is a department name appearing in
one of the tuples in the instructor relation, then there exists
a tuple in the department relation for “Biology”.

= Let A be a set of attributes. Let R and S be two relations that
contain attributes A and where A is the primary key of S. A is
said to be a foreign key of R if for any values of A appearing
in R these values also appearin S.

Database System Concepts - 7t Edition 4.80 ©Silberschatz, Korth and Sudarshan

Referential Integrity (Cont.)

= Foreign keys can be specified as part of the SQL create
table statement

foreign key (dept _name) references department

= By default, a foreign key references the primary-key
attributes of the referenced table.

= SQL allows a list of attributes of the referenced relation to
be specified explicitly.

foreign key (dept_name) references department
(dept_name)

Database System Concepts - 7t Edition 4.81 ©Silberschatz, Korth and Sudarshan

Cascading Actions in Referential Integrity

= When a referential-integrity constraint is violated, the normal
procedure is to reject the action that caused the violation.

= An alternative, in case of delete or update is to cascade
create table course (

(...
dept_name varchar(20),

foreign key (dept_name) references department
on delete cascade
on update cascade,

)

= |nstead of cascade we can use :
set null,
set default

Database System Concepts - 7t Edition 4.82 ©Silberschatz, Korth and Sudarshan

Integrity Constraint Violation During Transactions

= Consider:

create table person (
ID char(10),
name char(40),
mother char(10),
father char(10),
primary key /D,
foreign key father references person,
foreign key mother references person)

= How to insert a tuple without causing constraint violation?
Insert father and mother of a person before inserting person

OR, set father and mother to null initially, update after inserting
all persons (not possible if father and mother attributes
declared to be not null)

OR defer constraint checking

Database System Concepts - 7t Edition 4.83 ©Silberschatz, Korth and Sudarshan

Assertions

= An assertion is a predicate expressing a condition that we
wish the database always to satisfy.

= Element of schema (like table)

= Applies to entire database (not just the individual rows of a single
table)

hence it works even if Employee is empty
= The following constraints, can be expressed using assertions:

= For each tuple in the student relation, the value of the attribute
fot _cred must equal the sum of credits of courses that the
student has completed successfully.

= An instructor cannot teach in two different classrooms in a
semester in the same time slot

= An assertion in SQL takes the form:
create assertion <assertion-name> check (<predicate>);

Database System Concepts - 7t Edition 4.84 ©Silberschatz, Korth and Sudarshan

Assertion Example

CREATE ASSERTION DontFireEveryone
CHECK (0 < SELECT COUNT (*) FROM Employee)

Database System Concepts - 7t Edition 4.85 ©Silberschatz, Korth and Sudarshan

Sample

Employee
m-mmm
1111 3333 Kathy 2012
2222 3333 John 60K 2011
3333 0000 Cook 100K 2000
4444 0000 Mathew 75K 2012
5555 1111 Jun 40K 2015

Primary Key (ID),
FOREIGN KEY (Mgrld) References Employee(ld)

Query: Find the employee(s) who their salaries are higher than their
managers

Database System Concepts - 7t Edition 4.86 ©Silberschatz, Korth and Sudarshan

SELECT E1.ld, E1.Mgrild, E1.EmpName, E1.salary, E2.salary as Manager_Salary
FROM employee as E1

inner join employee as E2

On E1.Mgrid = E2.Id

where E1.salary > E2.salary

Database System Concepts - 7t Edition 4.87 ©Silberschatz, Korth and Sudarshan

Assertion

CREATE ASSERTION KeepEmployeeSalariesDown
CHECK (NOT EXISTS(
SELECT * FROM Employee E
WHERE E.Salary > E.MngrSalary))

EXISTS(R) is a boolean function (called predicate)
* Returns true when R it not empty

* Return false otherwise
NOT EXISTS(R) = isEmpty(R) = (R = ®)

Database System Concepts - 7t Edition 4.88

©Silberschatz, Korth and Sudarshan

Assertions and Inclusion Dependency

CREATE ASSERTION NoEmptyCourses
CHECK (NOT EXISTS |
SELECT * FROM Teaching T
WHERE T.roster() = @)

Idea: search those courses in Teaching such that they have no registered students.
But how to write T.roster() = ® in SQL?

Database System Concepts - 7t Edition 4.89 ©Silberschatz, Korth and Sudarshan

Assertions and Inclusion Dependency

CREATE ASSERTION NoEmptyCourses
CHECK (NOT EXISTS (
SELECT * FROM Teaching T
WHERE -- for each row T check the following condition
NOT EXISTS (
SELECT * FROM Transcript R
WHERE R.CrsCode = T.CrsCode
AND R.Semester = T.Semester)

))

Idea: search those courses in Teaching such that they have no registered students.

Database System Concepts - 7t Edition 490 ©Silberschatz, Korth and Sudarshan

User-Defined Types

= create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

= Example:

create table department
(dept_name varchar (20),
building varchar (15),
budget Dollars);

Database System Concepts - 7t Edition 4.91 ©Silberschatz, Korth and Sudarshan

Domains

= create domain construct in SQL-92 creates user-defined
domain types

create domain person _name char(20) not null

= Types and domains are similar. Domains can have
constraints, such as not null, specified on them.

= Example:

create domain degree level varchar(10)
constraint degree level test
check (value in ('Bachelors’, 'Masters', 'Doctorate’));

Database System Concepts - 7t Edition 4.92 ©Silberschatz, Korth and Sudarshan

MySQL: Enumeration Values

= Syntax: ENUM
= https://www.mysqltutorial.org/mysql-enum/

Database System Concepts - 7t Edition 493 ©Silberschatz, Korth and Sudarshan

Index Creation

= Many queries reference only a small proportion of the records
in a table.

= |tis inefficient for the system to read every record to find a
record with particular value

= An index on an attribute of a relation is a data structure that
allows the database system to find those tuples in the relation
that have a specified value for that attribute efficiently, without
scanning through all the tuples of the relation.

= We create an index with the create index command
create index <name> on <relation-name> (attribute);

Database System Concepts - 7t Edition 494 ©Silberschatz, Korth and Sudarshan

Index Creation Example

= create table student
(ID varchar (5),
name varchar (20) not null,
dept_name varchar (20),
tot _cred numeric (3,0) default O,
primary key (/D))

= create index studentID index on student(ID)
= The query:

select *
from student
where /D ='12345'

can be executed by using the index to find the required
record, without looking at all records of student

Database System Concepts - 7t Edition 4.95 ©Silberschatz, Korth and Sudarshan

Authorization

= \We may assign a user several forms of authorizations on
parts of the database.

Read - allows reading, but not modification of data.

Insert - allows insertion of new data, but not
modification of existing data.

Update - allows modification, but not deletion of data.
Delete - allows deletion of data.

= Each of these types of authorizations is called a privilege.
We may authorize the user all, none, or a combination of
these types of privileges on specified parts of a database,
such as a relation or a view.

Database System Concepts - 7t Edition 4.96 ©Silberschatz, Korth and Sudarshan

Authorization (Cont.)

= Forms of authorization to modify the database schema
Index - allows creation and deletion of indices.
Resources - allows creation of new relations.

Alteration - allows addition or deletion of attributes in a
relation.

Drop - allows deletion of relations.

Database System Concepts - 7t Edition 4.97 ©Silberschatz, Korth and Sudarshan

Authorization Specification in SQL

= The grant statement is used to confer authorization
grant <privilege list> on <relation or view > to <user list>
= <user list>is:
a user-id

public, which allows all valid users the privilege
granted

A role (more on this later)
= Example:

grant select on department to Amit, Satoshi

= Granting a privilege on a view does not imply granting any
privileges on the underlying relations.

= The grantor of the privilege must already hold the privilege
on the specified item (or be the database administrator).

Database System Concepts - 7t Edition 4.98 ©Silberschatz, Korth and Sudarshan

Privileges in SQL

= select: allows read access to relation, or the ability to
query using the view

Example: grant users U,, U,, and U, select
authorization on the instructor relation:

grant select on instructor to U,, U,, U,
= insert: the ability to insert tuples

= update: the ability to update using the SQL update
statement

= delete: the ability to delete tuples.

= all privileges: used as a short form for all the allowable
privileges

Database System Concepts - 7t Edition 4.99 ©Silberschatz, Korth and Sudarshan

Revoking Authorization in SQL

= The revoke statement is used to revoke authorization.

revoke <privilege list> on <relation or view> from <user
list>

= Example:
revoke select on student from U,, U,, U,

= <privilege-list> may be all to revoke all privileges the
revokee may hold.

= |f <revokee-list> includes public, all users lose the
privilege except those granted it explicitly.

= |f the same privilege was granted twice to the same user
by different grantees, the user may retain the privilege
after the revocation.

= All privileges that depend on the privilege being revoked
are also revoked.

Database System Concepts - 7t Edition 4.100 ©Silberschatz, Korth and Sudarshan

Roles

= Aroleis a way to distinguish among various users as far
as what these users can access/update in the database.

= To create a role we use:
create a role <name>
= Example:
create role instructor

= Once arole is created we can assign “users” to the role
using:

grant <role> to <users>

Database System Concepts - 7t Edition 4.101 ©Silberschatz, Korth and Sudarshan

Roles Example

= create role instructor;
= grant instructor to Amit;
= Privileges can be granted to roles:
grant select on takes to instructor;
= Roles can be granted to users, as well as to other roles
create role teaching assistant
grant teaching assistant to instructor;
Instructor inherits all privileges of teaching assistant
= Chain of roles
create role dean:;
grant instructor to dean,;

grant dean to Satoshi;

Database System Concepts - 7t Edition 4.102 ©Silberschatz, Korth and Sudarshan

View

= |n SQL, a view is a virtual table based on the result-set of
an SQL statement.

= A view contains rows and columns, just like a real table.
The fields in a view are fields from one or more real tables
in the database.

= A view is defined using the create view statement which
has the form

create view v as < query expression >

where <query expression> is any legal SQL expression.
The view name is represented by v.

Database System Concepts - 7t Edition 4.103 ©Silberschatz, Korth and Sudarshan

View

= (Once a view is defined, the view name can be used to refer
to the virtual relation that the view generates.

= View definition is not the same as creating a new relation
by evaluating the query expression

Rather, a view definition causes the saving of an
expression; the expression is substituted into queries
using the view.

Database System Concepts - 7t Edition 4.104 ©Silberschatz, Korth and Sudarshan

View Definition and Use

= A view of instructors without their salary

create view faculty as
select /ID, name, dept_name
from instructor

= Find all instructors in the Biology department
select name

from faculty
where dept_name = 'Biology’

= Create a view of department salary totals

create view departments_total salary(dept _name, total salary) as
select dept _name, sum (salary)
from instructor
group by dept name,;

Database System Concepts - 7t Edition 4.105 ©Silberschatz, Korth and Sudarshan

View - Substitution

When used in an SQL statement, the view definition is

substituted for the view name 1n the statement. As SELECT
statement nested in FROM clause

SELECT S.Name, C.Cum

FROM (SELECT T.Studld, AVG (T.Grade)
FROM Transcript T

GROUP BY T.studld) C, Student S
WHERE C.Studld = S.Studld AND C.Cum > 3.5

106

Database System Concepts - 7t Edition 4.106 ©Silberschatz, Korth and Sudarshan

View Benefits

= Access Control: Users not granted access to base tables.
Instead they are granted access to the view of the database
appropriate to their needs.

External schema is composed of views.

View allows owner to provide SELECT access to a subset of
columns (analogous to providing UPDATE and INSERT
access to a subset of columns)

107

Database System Concepts - 7t Edition 4.107 ©Silberschatz, Korth and Sudarshan

Views — Limiting Visibility

. Grade projected out

CREATE VIEW PartOfTranscript (Studlcf CrsCode, Semester) AS\
SELECT T. Studld, T.CrsCode, T.Semester -- limit columns
FROM Transcript T
WHERE T.Semester ='S2000’ -- limit rows

Give permissions to access data through view:
GRANT SELECT ON PartOfTranscript TO joe

This would have been analogous to:

GRANT SELECT (Studld,CrsCode,Semester)
ON Transcript TO joe

108

Database System Concepts - 7t Edition 4.108 ©Silberschatz, Korth and Sudarshan

View Benefits (cont’d)

= Customization: Users need not see full complexity of
database.

= View creates the illusion of a simpler database
customized to the needs of a particular category of
users

= Aview is similar in many ways to a subroutine in
standard programming
Can be reused in multiple queries

109

Database System Concepts - 7t Edition 4.109 ©Silberschatz, Korth and Sudarshan

Views Defined Using Other Views

= create view physics fall 2017 as
select course.course id, sec id, building, room _number
from course, section
where course.course id = section.course _id
and course.dept_name = 'Physics'
and section.semester = 'Fall’
and section.year = '2017";

= create view physics fall 2017 _watson as
select course id, room _number
from physics fall 2017
where building= "Watson’;

Database System Concepts - 7t Edition 4.110 ©Silberschatz, Korth and Sudarshan

Materialized Views

= (Certain database systems allow view relations to be
physically stored.

Physical copy created when the view is defined.
Such views are called Materialized view:

= |f relations used in the query are updated, the materialized
view result becomes out of date

Need to maintain the view, by updating the view
whenever the underlying relations are updated.

Database System Concepts - 7t Edition 4.111 ©Silberschatz, Korth and Sudarshan

Update of a View

create view faculty as
select ID, name, dept_name
from instructor

= Add a new tuple to faculty view which we defined earlier
insert into faculty
values ('30765', 'Green’, 'Music');

= This insertion must be represented by the insertion into the
instructor relation

Must have a value for salary.
= Two approaches
Reject the insert
Inset the tuple
('30765', 'Green’, 'Music', null)
into the instructor relation

Database System Concepts - 7t Edition 4.112 ©Silberschatz, Korth and Sudarshan

Some Updates Cannot be Translated Uniquely

= create view instructor_info as
select /D, name, building
from instructor, department
where instructor.dept _name= department.dept _name,

= insert into instructor _info
values ('69987', 'White', 'Taylor');
= |ssues
Which department, if multiple departments in Taylor?
What if no department is in Taylor?

Database System Concepts - 7t Edition 4113 ©Silberschatz, Korth and Sudarshan

And Some Not at All

= create view history instructors as
select *
from instructor
where dept _name= "History",

= \What happens if we insert
('25566', 'Brown', 'Biology', 100000)
into history _instructors?

Database System Concepts - 7t Edition 4.114 ©Silberschatz, Korth and Sudarshan

View Updates in SQL

= Most SQL implementations allow updates only on simple
views

The from clause has only one database relation.

The select clause contains only attribute names of the
relation, and does not have any expressions, aggregates,
or distinct specification.

Any attribute not listed in the select clause can be set to
null

The query does not have a group by or having clause.

Database System Concepts - 7t Edition 4.115 ©Silberschatz, Korth and Sudarshan

Authorization on Views

= create view geo instructor as
(select *
from instructor
where dept name = 'Geology’);

= grant select on geo instructorto geo staff

Database System Concepts - 7t Edition 4.116 ©Silberschatz, Korth and Sudarshan

End of Chapter 4

Database System Concepts - 7t Edition 4.117 ©Silberschatz, Korth and Sudarshan

